

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
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Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
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  # Code Structure

## Directory Structure

Language-specific best practices will apply to the full package name, but we’ll use the Java reference implementation
for an example of how the code should be structured:


	
	root (com.godaddy.asherah.appencryption)
	
	Interfaces and types a user interacts with during primary cryptographic operations.










	
	envelope (com.godaddy.asherah.appencryption.envelope)
	
	Core envelope encryption algorithm and models used










	
	kms (com.godaddy.asherah.appencryption.kms)
	
	Interfaces and types related to the external Key Management Service (KMS/HSM)










	
	persistence (com.godaddy.asherah.appencryption.persistence)
	
	Interfaces and types related to the Metastore and store/load model’s persistence functionality










	
	crypto (com.godaddy.asherah.crypto)
	
	Interfaces and types for Crypto Policy and any cryptographic functionality for internal data key generation










	
	crypto.keys (com.godaddy.asherah.crypto.keys)
	
	Interfaces and types for internally-generated data key management and caching












## Common APIs

Below are the primary public-facing interfaces of Asherah.

NOTE: The interfaces below are from the Java implementation of the SDK, which also serves as the reference
implementation

### Primary SDK Interfaces

The below interfaces implement the session factory using the step builder pattern.

```java
class SessionFactory {


static MetastoreStep newBuilder(String productId, String serviceId);

Session<JSONObject, byte[]> getSessionJson(String partitionId);
Session<byte[], byte[]> getSessionBytes(String partitionId);
Session<JSONObject, JSONObject> getSessionJsonAsJson(String partitionId);
Session<byte[], JSONObject> getSessionBytesAsJson(String partitionId);

void close();




}


	interface MetastoreStep {
	CryptoPolicyStep withMetastore(Metastore<JSONObject> metastore);





}


	interface CryptoPolicyStep {
	KeyManagementServiceStep withCryptoPolicy(CryptoPolicy policy);





}


	interface KeyManagementServiceStep {
	BuildStep withKeyManagementService(KeyManagementService keyManagementService);





}


	interface BuildStep {
	BuildStep withMetricsEnabled();
// Additional optional steps can be added here

SessionFactory build();






}

Cryptographic operations are performed using the methods provided in the Session interface.

```java
// <P> The payload type being encrypted
// <D> The Data Row Record type
interface Session<P, D> {


P decrypt(D dataRowRecord);
D encrypt(P payload);

Optional<P> load(String persistenceKey, Persistence<D> dataPersistence);
String store(P payload, Persistence<D> dataPersistence);
void store(String key, P payload, Persistence<D> dataPersistence);

void close();






}

For the [store/load](../README.md#store–load) usage model, we also need to implement the Persistence interface

```java
// When using the store/load style, this defines the callbacks used to interact with Data Row Records.
interface Persistence<T> {


Optional<T> load(String key);
String store(T value);
void store(String key, T value);
String generateKey(T value);






}

### Crypto Policy


	```java
	// Used to configure various behaviors of the internal algorithm



	interface CryptoPolicy {
	
	enum KeyRotationStrategy {
	INLINE, // This is the only one currently supported/implemented
QUEUED





};
KeyRotationStrategy keyRotationStrategy();

boolean isKeyExpired(Instant keyCreationDate);
long getRevokeCheckPeriodMillis();

boolean canCacheSystemKeys();
boolean canCacheIntermediateKeys();

boolean canCacheSessions();
long getSessionCacheMaxSize();
long getSessionCacheExpireMillis();

boolean notifyExpiredIntermediateKeyOnRead();
boolean notifyExpiredSystemKeyOnRead();







}

Detailed information about the CryptoPolicy can be found [here](CryptoPolicy.md)

### Metastore

```java
// Defines the backing metastore
interface Metastore<V> {


Optional<V> load(String keyId, Instant created);
Optional<V> loadLatest(String keyId);

boolean store(String keyId, Instant created, V value);






}

Detailed information about the Metastore can be found [here](Metastore.md)

### Key Management Service

```java
// Defines the root KMS
interface KeyManagementService {


byte[] encryptKey(CryptoKey key);
CryptoKey decryptKey(byte[] keyCipherText, Instant keyCreated, boolean revoked);


	<T> T withDecryptedKey(byte[] keyCipherText, Instant keyCreated, boolean revoked,
	BiFunction<CryptoKey, Instant, T> actionWithDecryptedKey);










}

Detailed information about the  Key Management Service can be found [here](KeyManagementService.md)




            

          

      

      

    

  

    
      
          
            
  # Crypto Policy

The crypto policy interface dictates the various behaviors of Asherah and can be configured with the below options:


	canCacheSystemKeys
* enables/disables caching of System Keys


	canCacheIntermediateKeys
* enables/disables caching of Intermediate Keys


	canCacheSessions
* enables/disables caching of Sessions


	getSessionCacheMaxSize
* the maximum numbers of sessions to cache


	getSessionCacheExpireMillis
* the time period to expire the sessions present in the cache


	getRevokeCheckPeriodMillis
* the time period to revoke keys present in cache


	isKeyExpired
* defines if a key is expired


	keyRotationStrategy
* defines the key rotation strategy; enumeration of INLINE, QUEUED.


	notifyExpiredSystemKeyOnRead
* enables/disables notifications for expired System Key.


	notifyExpiredIntermediateKeyOnRead
* enables/disables notifications for expired Intermediate Key.




## Implemented Policies

### Basic Expiring Crypto Policy

This policy has some suggested pre-configured defaults which can be optionally overridden. The two required properties
for this policy are:


	keyExpirationDays: The number of days after which a key will expire. This is tied to the isKeyExpired interface




method. If a key is expired, the old key is used to decrypt the data. Depending on the crypto policy configuration it is
then rotated inline on the next write or queued for renewal (not implemented as of this writing).
* revokeCheckMinutes: Keys are cached to minimize calls to external datastores for fetching and decrypting keys. This
property sets the cache’s TTL and is needed in case we chose to revoke the keys in the cache. This is tied to the
getRevokeCheckPeriodMillis interface method.

### Never Expiring Crypto Policy (FOR TESTING ONLY)

This policy supports keys that neither expire nor are removed from the cache. This *should never be used in the
production environment*.



            

          

      

      

    

  

    
      
          
            
  # Design and Architecture



	
	[Definitions](#definitions)
	
	[Common Encryption Terminology](#common-encryption-terminology)


	[SDK Terminology](#sdk-terminology)










	
	[Data Structures and Storage](#data-structures-and-storage)
	
	
	[Envelope Key Record Structure](#envelope-key-record-structure)
	
	[Intermediate Key and System Key](#intermediate-key-and-system-key)


	[Data Row Record](#data-row-record)










	[Key Hierarchy and Storage](#key-hierarchy-and-storage)










	[High Level Library Flows](#high-level-library-flows)







## Definitions

### Common Encryption Terminology

The following common encryption terms will help establish the roles of the internals in the SDK.


	
	Data Encryption Key (DEK)
	
	A key that is used to encrypt data










	
	Key Encryption Key (KEK)
	
	A key that is used to encrypt another key (as opposed to data)










	
	Envelope Encryption
	
	Process where data is encrypted with a DEK, the DEK is encrypted with a KEK, and the encrypted data and encrypted data
key are stored together










	
	Hardware Security Module (HSM)
	
	A physical device which securely stores keys in a manner in which they cannot be extracted










	
	Key Management Service (KMS)
	
	A managed service which provides secure and centralized key management and encryption functionality that is typically
offered by a cloud provider.










	
	Master Key (MK)
	
	Root key managed by an HSM or KMS












### SDK Terminology

Below are common terms you will see throughout the SDK documentation. We’ll show how these come together in more detail in the
[Data Structures and Storage](#data-structures-and-storage) section.

Data structures:
* System Key (SK)



	A KEK generated by the SDK, which is encrypted by a KEK generated by the MK. Suggested partition scope is a service or
subsystem








	
	Intermediate Key (IK)
	
	A KEK generated by the SDK, which is encrypted by an SK. Suggested partition scope is a user or account










	
	Data Row Key (DRK)
	
	A DEK generated by the SDK, which is encrypted by an IK and generated on every encrypt/write request










	
	Data Row Record (DRR)
	
	Envelope containing data encrypted by the DRK and the encrypted DRK










	
	Envelope Key Record (EKR)
	
	Internal data structure used to represent a SK, IK, or DRK. Consists of an encrypted key and metadata referencing the
parent key in the key hierarchy used to encrypt it (i.e. its KEK)










	
	ParentKeyMeta
	
	Metadata in EKR that references a parent key in the key hierarchy. Note that for SKs, this content may be embedded
within the encrypted key content, depending on the KMS being used












High-level components:
* KeyManagementService



	Represents a backing HSM or KMS implementation








	
	Metastore (aka Metadata Persistence)
	
	Represents a SDK-managed datastore implementation used to store SK and IK EKRs










	
	CryptoPolicy
	
	Defines the policy used to manage internal behavior of the library, such as when to expire keys










	
	Secure Memory
	
	Provides the unmanaged off-heap memory mechanisms that implement protected memory best practices










	
	Protected Memory Cache (aka Cache)
	
	The location where the Application Encryption SDK stores decrypted keys using Secure Memory










	
	Data Persistence (aka Persistence)
	
	Represents a user-managed datastore implementation used to store DRRs












## Data Structures and Storage

### Envelope Key Record Structure

The EKR structure is used to represent SKs, IKs, and DRKs. The following describes the base payload of an EKR, which is
in the form a document model:


Created: UTC epoch in seconds of when the key was created
ParentKeyMeta: Identifier data of parent key (which encrypts this key)


KeyId: KeyId of the parent key
Created: Created timestamp of parent key




Key: Base64(Key encrypted with the parent key)


	NOTE: For SK, the ParentKeyMeta (in this case the MK identifier) may instead be part of the Key content,
	depending on the MK type.








The SK and IK incorporation of the EKR is slightly different than that of the DRK due to their different storage
implementations.

#### Intermediate Key and System Key

SK and IK storage is managed by the library. Additional details can be found in the [Metastore page](Metastore.md).
They are uniquely identified by the combination of their Id and Created in the Metastore.

The data model used for them is shown in the below example:

```javascript
// Example SK:
{


Id: “_SK_servicefoo_systembar”,
Created: 1534553054,
Key: “JCkteWk4WihfNmdyaSVleTI3Rjk2emYlQSUoTW1oJm4=”
// NOTE: The Key contains meta correlating it to its Parent Key in this case




}

// Example IK pointing to above SK:
{


Id: “_IK_112313_servicefoo_systembar”,
Created: 1534553075,
Key: “TiVCJTEtOGxNYyMyMTk1a3JNKDVQWnZZYm9PeUxOd0o=”,
ParentKeyMeta: {


KeyId: “_SK_servicefoo_systembar”,
Created: 1534553054




}





}

#### Data Row Record

DRR storage is managed by the user. When using the [store/load](../README.md#store–load) usage model, callbacks into
user-supplied storage implementations can be invoked by the SDK. Otherwise, when using the
[encrypt/decrypt](../README.md#encrypt–decrypt) usage model, the SDK is not involved with the user storage flow. As a
result, there is no unique ID in the DRR data model.

The DRR represents the envelope encryption result of the DRK and payload:


Key: <Envelope Key Record (EKR) for DRK>
Data: <Base64(Data encrypted with DRK)>




The DRK data model closely follows the EKR base structure:

```javascript
{


Created: 1534553138,
Key: “Xmw5aiUzKWdxSlVJTEJsek41a2NuLVIzUENuUWslZEQ=”,
ParentKeyMeta: {


KeyId: “_IK_112313_servicefoo_systembar”,
Created: 1534553075




}






}

The full data model used for the DRR then looks like:

```javascript
// Note the DRK points to the IK from the above example
{



	Key: {
	// This structure is the DRK
Created: 1534553138,
Key: “Xmw5aiUzKWdxSlVJTEJsek41a2NuLVIzUENuUWslZEQ=”,
ParentKeyMeta: {


KeyId: “_IK_112313_servicefoo_systembar”,
Created: 1534553075




}





},
Data: “YmxETXdMTFZ4VGJvTWVMbkVrT2xkRUVjSGlWQ3JueW5LVUdQbFhWakNPbXJVcE5Pc2ZXZk9tUGdFWkxQYUNkZw==”






}

Storage Format:

The DRR format can currently be stored as JSON or UTF-8 encoded bytes representing the JSON. Later versions may
support different serialization formats, compression, etc.

### Key Hierarchy and Storage

The following diagram summarizes the high-level relationship between all the keys and their separation of storage:

![Key Hierarchy](images/key_hierarchy.png)

## High Level Library Flows

Below are some very high level example flows that show the interactions that the library abstracts away from the
user.

Use case where all keys are created from scratch:

![Create all keys flow](images/happy_path_create_all_keys.svg)

Use case where the IK is already cached:

![IK cached flow](images/happy_path_ik_cached.svg)

While these flows cover relatively simple use cases, they get significantly more complex when dealing with
key rotation at different levels.




            

          

      

      

    

  

    
      
          
            
  # FAQ

#### Why not use something off-the-shelf?

Asherah effectively is a composition of off the shelf technologies. All of the envelope encryption keys are rooted in
a KMS. For example, if we are deploying to AWS it would involve Amazon KMS. Encryption techniques comes from language
specific cryptographic libraries. SecureMemory provides secure memory heap, additional memory protection primitives and
the ability to control core dumps and swap, all of which use kernel functionality.

#### Why not use Transparent Disk Encryption or native database encryption functionality?

Application layer encryption is vastly more secure than transparent disk encryption or database encryption. Encryption
has value when unauthorized parties steal the data, but see the data encrypted and thus, it is useless. With transparent
disk encryption, the unauthorized parties would have to steal the disks themselves or image the disks at the block layer
to see the encrypted data. In the public cloud with the type of security employed this is an unlikely scenario. Native
database encryption provides better protection by working one layer higher, such that if the database files were
accessed, they would be encrypted. However, it is far more likely and common that the application will be exploited to
exfiltrate the information at the application layer. Moreover, with security at an application layer, the attacker needs
to compromise both the application server and the database server. Using properly scoped application layer encryption,
we make it difficult for an exploited application to exfiltrate more than one account’s information since the session
would generally have the key scoped to that account cached and logically accessible.

#### Why not build a majority of the code in C and reuse it?

This is a viable solution and it was considered, however we determined that if it were possible to make platform native
libraries that use the unmanaged interop facilities of the language to make native calls, it would be easier for
application developers to debug rather than providing a “black box”. This also prevents other potential build and
compatibility issues depending on whether we shipped C code that needs to be built for your particular platform, or
binary plugs for supported platforms like Linux/x64, Linux/ARM, Windows/x64, etc. Also, by using the language/platform
we are targeting, we are able to use the Amazon SDK for the language in question. We also improve the ability for the
majority of our users to contribute to the libraries by using their language of choice rather than C.

#### Is it safe to cache crypto keys?

The methodology used to create and protect an off-heap memory area for caching crypto keys is similar to implementations
in the Chrome/Chromium browser, libsecret/Gnome, and the OpenSSL secure memory API. This is a common pattern for
maintaining keys in memory in a way that attempts to avoid any key exfiltration including swapping, core dumps,
debugger memory scans, Specter like CPU vulnerabilities, etc. As hardware memory protection facilities are being
developed and tested, we will monitor those options and consider using them after they’ve been shown secure (eg. Intel
SGX, AMD SEV, TPM, etc).

The keys are scoped and the design also allows us to rotate keys fairly often which helps mitigate the potential
exposure of keys.

#### Why can’t I just encrypt the data myself with a key stored securely in Kubernetes Secrets?

This simple model doesn’t have any of the advantages of the application layer envelope encryption model we have chosen:
- No ability to scope keys and limit the scope of access of sessions
- A great deal of data is encrypted with the same key (high risk of single key leak)
- Rotation of the key requires all of the encrypted data to be rewritten (slow, massive I/O costs, possible outage
during rotation depending on design)
- Does not have the “right to be forgotten” insurance of a per customer key
- Additional tooling required to root keys in a KMS/Cloud HSM

#### Why can’t I just use a Key Management Service (KMS) directly?

The added latency of doing a KMS operation for every database read is not insignificant, and it also poses an additional
cost. By maintaining our own key hierarchy that roots in a KMS, we can choose to cache System keys at service startup,
and Intermediate keys at login. This allows us to minimize the calls to a KMS to generally one call on service startup.
The performance gains and cost savings are significant.



            

          

      

      

    

  

    
      
          
            
  # SDK Internals

## Envelope Encryption Algorithm

### Encrypt

Depending on policy, we will either continue to encrypt if a key in the tree has expired or rotate/generate keys inline.

```
Data is ready to write to data persistence
If latest IK is not cached or latest IK in cache is expired


Load latest IK EKR from metastore
If IK is found



	If IK is not expired or (IK is expired and policy allows queued rotation)
	
	If SK is not cached
	Load specific SK EKR from metastore
If SK EKR DOES NOT exist in metastore


Fall through to new IK creation




If allowed by policy, add SK to protected memory cache



	If SK is expired
	# NOTE: Possible inconsistency: when policy doesn’t use inline rotation, consider proceeding without
#       forced creation (same as IK handling)
Fall through to new IK creation



	Else
	Use SK to decrypt IK







	Else
	Fall through to new IK creation









	Else (new IK being created)
	
	If latest SK is not cached or latest SK in cache is expired
	Load latest SK EKR from metastore
If SK is found



	If SK is not expired or (SK is expired and policy allows queued rotation)
	Use MK in HSM to decrypt SK



	Else
	Fall through to new SK creation









	Else (new SK being created)
	Create new SK with crypto library (e.g. openssl)
Use MK in HSM to encrypt SK
Attempt to write SK EKR in metastore
If SK EKR write failed due to duplicate (race condition with other thread)


Load latest SK EKR from metastore
Use MK in HSM to decrypt SK








If allowed by policy, add SK to protected memory cache





Create new IK with crypto library (e.g. openssl)
Use SK to encrypt IK
Attempt to write IK EKR in metastore



	If IK EKR write failed due to duplicate (race condition with other thread)
	Load latest IK EKR from metastore
If SK is not cached


Load specific SK EKR from metastore
If SK EKR DOES NOT exist in metastore


THROW ERROR: Unable to decrypt IK, missing SK from metastore (shouldn’t happen)




Use MK in HSM to decrypt SK
If allowed by policy, add SK to protected memory cache





	If SK is expired
	THROW ERROR: system key expired (shouldn’t happen, other thread would’ve created one)





Use SK to decrypt IK








If allowed by policy, add IK to protected memory cache








Create new DRK with crypto library (e.g. openssl)
Use DRK to encrypt Data
Use IK to encrypt DRK
Create and write DRR to data persistence
```

The following diagram summarizes the entire encrypt path.

![Encrypt Flow](https://raw.githubusercontent.com/godaddy/asherah/master/docs/images/encrypt.svg?sanitize=true)

### Decrypt

```
Load DRR from data persistence
Extract IK meta from DRR
If IK is not cached


Load specific IK EKR from metastore
If IK EKR DOES NOT exist in metastore


THROW ERROR: Unable to decrypt DRK, missing IK from metastore




Extract SK meta from IK EKR
If SK is not cached


Load specific SK EKR from metastore
If SK EKR DOES NOT exist in metastore


THROW ERROR: Unable to decrypt IK, missing SK from metastore




Use MK in HSM to decrypt SK
If allowed by policy, add SK to protected memory cache





	If SK is expired
	# NOTE: None of these currently implemented
Send notification SK is expired
Queue SK for rotation
Queue IK for rotation
Queue DRK for rotation





Use SK to decrypt IK
If allowed by policy, add IK to protected memory cache





	If IK is expired
	# NOTE: None of these currently implemented
Send notification IK is expired
Queue IK for rotation
Queue DRK for rotation #We’ll continue to wind up here until we write with valid key





Use IK to decrypt DRK
Use DRK to decrypt Data
If DRK is expired


# NOTE: Not currently implemented
Queue DRK for rotation




Return decrypted data
```

The following diagram summarizes the entire decrypt path.

![Decrypt Flow](https://raw.githubusercontent.com/godaddy/asherah/master/docs/images/decrypt.svg?sanitize=true)

### Future Consideration: Queued Rotation

Below are the proposed queue rotation flows.

#### MK Rotation

```
This happens annually
Update the policy to expire all the keys
Once it does:


Queue All SKs for rotation
Queue All IKs for rotation
Queue All DRKs for rotation #Specific for each user - this is stored in the application




```

#### SK Rotation

```
Read message from FIFO SK_IK key rotation queue
If SK message meta = current SK meta in metastore


Load SK EKR from metastore
Use MK in HSM to create and encrypt a new SK
Create and write new SK EKR in metastore




Delete message
```

#### IK Rotation

```
Read message from FIFO SK_IK key rotation queue
If IK meta in message = current IK in metastore



	If SK EKR DOES NOT exist in metastore
	THROW ERROR: no SK exists





Load current SK EKR from metastore
Use MK in HSM to decrypt SK
If SK is expired


Queue SK for rotation
Queue IK for rotation





	Else
	Create new IK from crypto library (e.g. openssl)
Use SK to encrypt IK
Create and write new IK EKR in metastore








Delete message
```

#### DRK Rotation - POTENTIAL RACE CONDITION

```
Read message from standard DRK key rotation queue
Load DRK EKR from message
If IK is not cached


Load current IK from metastore
If SK in IK EKR is not cached


Load current SK from metastore
Use MK in HSM to decrypt SK





	If SK is expired
	Queue SK for rotation
Queue IK for rotation
Exit #We’ll be back once SK has rotated





Use SK to decrypt IK





	If IK is expired
	Queue IK for rotation
Exit  #We’ll be back once IK has rotated





Create new DRK from crypto library (e.g. openssl)
Load DRR from data persistence
Use DRK to encrypt data
Use IK to encrypt DRK
Load DRR from data persistence AGAIN
If DRK EKR matches DRR EKR


#Warning potential race condition starts here
Update existing DRR in data persistence
#We could have just overwritten a user’s write




Delete Message
```

## Secure Memory

### Current Implementation

Secure Memory is implemented using well known native calls that ensure various protections of a secret value in memory.
Below we describe the pseudocode a Secure Memory implementation needs to perform to properly protect memory. Note the
calls will refer to libc-specific implementation. In the future, if we add support for Windows we’ll update this
page with corresponding calls appropriately.

#### Create a Secret

```java
ProtectedMemorySecret(byte[] secret) {


// check rlimit to make sure we won’t exceed limit
get memlock rlimit from system
if memlock not unlimited and will be exceeded by secret {


THROW ERROR memlock rlimit will be exceeded by allocation




}

// TODO allocate memory with blah blah protections (explain what this all means)
pointer = mmap(addr = NULL, length = <secret.length>, prot = (PROT_READ | PROT_WRITE),


flags = (MAP_PRIVATE | MAP_ANONYMOUS), fd = -1, offset = 0)




// lock virtual address space into memory, preventing it from being paged to swap/disk
error = mlock(addr = pointer, len = <secret.length>)
if error {


// deallocate memory
munmap(addr = pointer, len = <secret.length>)
THROW ERROR mlock failed




}

// advise kernel not to include the memory space in core dumps.
// NOTE: for MacOS, madvise not available, so we disable core dumps globally via
// “setrlimit(resource = RLIMIT_CORE, rlim = (cur = 0, max = 0))”
error = madvise(addr = pointer, length = <secret.length>, advice = MADV_DONTDUMP)
if error {


// unlock virtual address space from memory, allowing it to be paged to swap/disk
munlock(addr = pointer, len = <secret.length>)
// deallocate memory
munmap(addr = pointer, len = <secret.length>)
THROW ERROR madvise failed




}

// write the secret
pointer.write(secret)

// disable all memory access
mprotect(addr = pointer, len = <secret.length>, prot = PROT_NONE)

// wipe input bytes
arrayFillZero(secret)





}

#### Use a Secret

```java
withSecretBytes(function<byte[], type> functionWithSecret) {


bytes = new byte[length]
try {


// change memory page access to read-only
mprotect(addr = pointer, len = <length>, prot = PROT_READ)


	try {
	// read the secret into local variable
pointer.read(0, bytes, 0, bytes.length)





}
finally {


// always disable all memory access
mprotect(addr = pointer, len = <length>, prot = PROT_NONE)




}

return functionWithSecret(bytes)




}
finally {


// always wipe local variable
arrayFillZero(bytes)




}






}

##### Concurrent Access

The withSecretBytes pseudocode above is not thread-safe code as written. A thread could disable the memory access as
another thread attempts to read the secret, which would result in a SIGSEGV signal to the process. Some form of thread
safety is needed to guard against this. For example, this could be implemented using a lock and access counter to
determine when we need to make the memory readable (first thread accessing) or unreadable (last thread accessing).

#### Delete a Secret

```java
close() {


// change memory page access to read-write
mprotect(addr = pointer, len = <length>, prot = (PROT_READ | PROT_WRITE))


	try {
	// use platform specific zero memory function that can’t be optimized away.
// for MacOS, use memset_s(dest = pointer, destSize = <length>, c = 0, count = <length>)
bzero(addr = pointer, length = <length>)





}
finally {



	try {
	// always unlock virtual address space from memory, allowing it to be paged to swap/disk
munlock(addr = pointer, len = <secret.length>)





}
finally {


// always free memory
munmap(addr = pointer, len = <secret.length>)




}




}






}

### Future Work

We plan to investigate the feasibility of replacing the current Secure Memory implementation with calls to a common
library such as OpenSSL, BoringSSL, etc. The intent of this effort would be to see if we can provide even stronger
memory protections, refactor existing crypto calls to use the selected library, and provide more cross-language
implementation consistency.

## Key Cache

### TTL and Expired/Revoked Keys

The [Crypto Policy](CryptoPolicy.md)’s revokeCheckPeriodMillis drives the key cache implementation’s TTL behavior.
The TTL is primarily intended to signal refreshing the cache so the SDK can check if keys have been flagged out-of-band
as revoked (e.g. due to a suspected compromise). Note that in the Java reference implementation, we are not currently
removing expired or revoked keys from the cache. This approach was chosen to minimize the added latency and cost
associated with interacting with a KMS/HSM provider (recall TTL is more likely to come into play with System Keys due
to their [intended lifecycle](KeyCaching.md#cache-lifecycles)).

### Duplicate Key Handling

Since the objects being cached are resources which need to be closed, there is additional complexity when dealing with
duplicates in the cache. The approach taken in the Java reference implementation is to always return the key intended
to be closed to the caller:
* For the case of a new key being added to the cache, we return a new “shared key” representation of the key whose
close operation is a no-op (since the key passed in to the cache put/store call will now be used in the cache by other
threads).
* For the case of a duplicate key being added to the cache (e.g. a race condition’s second thread), we return the key
passed in to the cache put/store call so it can be safely closed without affecting the existing underlying key in the
cache and ensuring we don’t leak the memory space of the key.




            

          

      

      

    

  

    
      
          
            
  # Key Caching

Asherah supports caching of Intermediate and System Keys to minimize calls against external resource and reducing
latency. This is especially important for minimizing calls to the configured
[Key Management Service](KeyManagementService.md) as that is often the most expensive and latent interaction of the
resources involved. The cache is built on top of the Secure Memory implementation.
For stateless workloads, when the calling app can’t make use of the shared session, Asherah also provides the option
of caching Sessions. This further helps in reducing the latency by minimizing the number of API calls to the metastore
as the SDK makes use of the cached session instead of creating a new one.

## Crypto Policy Configuration

The [Crypto Policy](CryptoPolicy.md) can be used to enable or disable the caching of the keys and session. Since keys
can be flagged as “revoked” before their expiration period (i.e. irregular key rotation), the status of a cached key
is periodically retrieved from the Metastore. This “Revoke Check” period is configured using the
[Crypto Policy](CryptoPolicy.md)’s revokeCheckPeriodMillis. The
[Basic Expiring Crypto Policy](CryptoPolicy.md#basic-expiring-crypto-policy) provided by the library simplifies this to
the granularity of a minute with revokeCheckMinutes() in the builder.

## Cache Lifecycles

Due to the [hierarchical ordering](DesignAndArchitecture.md#key-hierarchy-and-storage) of the System and Intermediate
Keys, the scope of the their respective caches are different. For System Keys, which are intended to be service-level
keys, their lifetime is that of the SessionFactory. Ideally an instance of SessionFactory
is a singleton, where its lifetime is that of the application. This allows for the System Key cache to be shared
across Session instances generated from the session factory. Doing so prevents each one of these “encryption
sessions” from having to cache another copy of the same System Key in Secure Memory, as well as avoiding interaction
with the [Key Management Service](KeyManagementService.md) to decrypt it.

The cache for Intermediate Keys is scoped to the current partition’s Session instance/session. This session has its
lifecycle maintained by the Session cache, which is configured by the [Crypto Policy](CryptoPolicy.md). Sharing the
Intermediate Key caches across sessions would incur less security posture as the blast radius would be widened if an
attacker somehow managed to hijack an application’s session.

For a real-world example, consider an API request made from a web application with a logged-in user. When the request
is received, an encryption session will be created from the session factory with that user as the defining partition.
The first attempt at accessing encrypted data for that user will retrieve the Intermediate Key used for that Data Row
Key’s encryption key. That Intermediate Key will be decrypted by the System Key, which would most likely be retrieved
from the System Key cache that is shared across other encryption sessions. The Intermediate Key would then be decrypted
and cached for the lifetime of that encryption session, which is likely the lifetime of that API request.

Below is a sequence diagram to help visualize the cache lifecycles (note DRK/DRR operations removed for simplicity):

![Cache Lifecycle](images/cache_lifecycles.svg)



            

          

      

      

    

  

    
      
          
            
  # Key Management Service

Asherah requires a Key Management Service (KMS) to generate the top level Master Key and to encrypt the System Keys.
The key management service is pluggable which provides you a flexible architecture. It enables you to use an HSM for
providing the Master Key or staying cloud agnostic if using a hosted key management service.


	
	[Supported Key Management Systems](#supported-key-management-systems)
	
	[AWS KMS](#aws-kms)
* [Creating Keys](#creating-an-aws-kms-key)
* [Permissions](#permissions)


	[Static Key Management](#static-kms-for-testing-only)










	[Disaster Recovery](#disaster-recovery)




## Supported Key Management Systems

### AWS KMS

Asherah provides multi-region support for [AWS KMS](https://docs.aws.amazon.com/kms/latest/developerguide/index.html).
You can encrypt data in one region and decrypt it using the keys from another region.

To setup the service, all you need is a map/dictionary of regions and corresponding ARNs and a preferred region. The SDK
will give priority to the preferred region while attempting decryption, but will fall back to other regions, if required.

The key encryption key for each region is stored as part of the meta information for the System Key. Any of those KEKs
can be used to decrypt the System Key.

The meta information is stored internally in the following format:

```javascript
{


“encryptedKey”: “<base64_encoded_bytes>”,
“kmsKeks”: [



	{
	“region”: “<aws_region>”,
“arn”: “<arn>”,
“encryptedKek”: “<base64_encoded_bytes>”








]





}

NOTE: In case of a local region KMS failure, expect higher latency as a different region’s KMS ARN will be used to
decrypt the System Key. Keep in mind this should be rare since System Keys should be cached to further reduce
likelihood of this.

#### Creating an AWS KMS Key

You can create a new key using the AWS CLI. See the
[AWS Develper Guide](https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html) for more.

```console
$ aws kms create-key
{



	“KeyMetadata”: {
	“AWSAccountId”: “123456789012”,
“KeyId”: “1234abcd-56ef-78ab-90cd-1a2b3c4d5e6f”,
“Arn”: “arn:aws:kms:us-west-2:123456789012:key/1234abcd-56ef-78ab-90cd-1a2b3c4d5e6f”,
“CreationDate”: “2021-01-12T12:00:14.916000-08:00”,
“Enabled”: true,
“Description”: “”,
“KeyUsage”: “ENCRYPT_DECRYPT”,
“KeyState”: “Enabled”,
“Origin”: “AWS_KMS”,
“KeyManager”: “CUSTOMER”,
“CustomerMasterKeySpec”: “SYMMETRIC_DEFAULT”,
“EncryptionAlgorithms”: [


“SYMMETRIC_DEFAULT”




]





}






}

#### Permissions

Next, you’ll need to ensure Asherah has sufficient permissions to interact with the key. The following example creates a
new customer managed policy that allows any attached user access to the above key.

```console
$ aws iam create-policy –policy-name asherah-kms-access –policy-document file://policy.json
{



	“Policy”: {
	“PolicyName”: “asherah-kms-access”,
“PolicyId”: “ZXR6A36LTYANPAI7NJ5UV”,
“Arn”: “arn:aws:iam::123456789012:policy/asherah-kms-access”,
“Path”: “/”,
“DefaultVersionId”: “v1”,
“AttachmentCount”: 0,
“PermissionsBoundaryUsageCount”: 0,
“IsAttachable”: true,
“CreateDate”: “2021-01-12T21:05:15+00:00”,
“UpdateDate”: “2021-01-12T21:05:15+00:00”





}






}

The file policy.json provided as the policy document is a JSON document in the current directory:

```json
{


“Version”: “2012-10-17”,
“Statement”: [



	{
	
	“Action”: [
	“kms:Decrypt”,
“kms:DescribeKey”,
“kms:Encrypt”,
“kms:GenerateDataKey*”,
“kms:ReEncrypt*”





],
“Resource”: [


“arn:aws:kms:us-west-2:123456789012:key/1234abcd-56ef-78ab-90cd-1a2b3c4d5e6f”




],
“Effect”: “Allow”





}




]






}

For more information on creating policies using the AWS CLI, see
[create-policy](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html) in
AWS CLI Command Reference.

### Static KMS (FOR TESTING ONLY)

The SDK also supports a static KMS but it *should never be used in production*.

## Disaster Recovery

Ensure that you have policies to prevent accidental deletion of a KMS key. Removal of a KMS key will render System Keys
unusable which may, consequently, render data unreadable.




            

          

      

      

    

  

    
      
          
            
  # Metastore
Asherah handles the storage of Intermediate and System Keys in its “Metastore” which is pluggable, and hence provides a flexible architecture.


	[Metastore Implementations](#metastore-implementations)
* [RDBMS](#rdbms)
* [AWS DynamoDB](#dynamodb)



	[Permissions](#permissions)








	[In-memory](#in-memory)






	[Disaster Recovery](#disaster-recovery)


	[Revoking Keys](#revoking-keys)




### Metastore Implementations

#### RDBMS
``` sql
CREATE TABLE encryption_key (


id             VARCHAR(255) NOT NULL,
created        TIMESTAMP    NOT NULL DEFAULT CURRENT_TIMESTAMP,
key_record     TEXT         NOT NULL,
PRIMARY KEY (id, created),
INDEX (created)





);

NOTE: This schema should work with most of the database vendors. We have run our test suites against MySQL. As vendor-specific issues are reported, additional schemas/information will be added as needed.

##### Row Data Size Estimates
The estimates provided are based on examples using product id, system id, and partition id with lengths of 11, 13, and 10 bytes respectively in MySQL.

The row data size estimates were calculated by using the below query against actual data. Note that this does not account for index size.

` sql
-- varchar 255 has 1 byte overhead, timestamp w/ no fractional seconds uses 4 bytes, and text has 2 bytes overhead
select id, created, (1 + octet_length(id) + 4 + 2 + octet_length(key_record)) as row_data_size from encryption_key;
`

IntermediateKey: 253 bytes
SystemKey: 1227 bytes (assumes AWS KMS with 2 regions. each additional region adds ~494 bytes)

#### DynamoDB

Default Table Name: EncryptionKey
Partition/Hash Key: Id (string)
Sort/Range Key: Created (number)

AWS CLI Example:

``` console
aws dynamodb create-table 


–table-name EncryptionKey –key-schema 


AttributeName=Id,KeyType=HASH AttributeName=Created,KeyType=RANGE 





	–attribute-definitions 
	AttributeName=Id,AttributeType=S AttributeName=Created,AttributeType=N 








<billing mode / provisioned throughput setup>
```

##### Permissions

Next, you’ll need to ensure Asherah has sufficient permissions to interact with the table. The following example creates
a new customer managed policy that allows any attached user access to the above table.

```console
$ aws iam create-policy –policy-name asherah-dynamodb-access –policy-document file://policy.json
{



	“Policy”: {
	“PolicyName”: “asherah-dynamodb-access”,
“PolicyId”: “ANPAWOYE3S3ESQKWJRFZW”,
“Arn”: “arn:aws:iam::123456789012:policy/asherah-dynamodb-access”,
“Path”: “/”,
“DefaultVersionId”: “v1”,
“AttachmentCount”: 0,
“PermissionsBoundaryUsageCount”: 0,
“IsAttachable”: true,
“CreateDate”: “2021-01-12T21:57:05+00:00”,
“UpdateDate”: “2021-01-12T21:57:05+00:00”





}






}

The file policy.json provided as the policy document is a JSON document in the current directory:

```json
{


“Version”: “2012-10-17”,
“Statement”: [



	{
	
	“Action”: [
	“dynamodb:BatchGetItem”,
“dynamodb:BatchWriteItem”,
“dynamodb:ConditionCheckItem”,
“dynamodb:PutItem”,
“dynamodb:DescribeTable”,
“dynamodb:DeleteItem”,
“dynamodb:GetItem”,
“dynamodb:Scan”,
“dynamodb:Query”,
“dynamodb:UpdateItem”





],
“Resource”: “arn:aws:dynamodb:*:12345789012:table/EncryptionKey”,
“Effect”: “Allow”





}




]






}

For more information on creating policies using the AWS CLI, see
[create-policy](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-policy.html) in
AWS CLI Command Reference.

##### Item Data Size Estimates
The estimates provided are based on examples using product id, system id, and partition id with lengths of 11, 13, and 10 bytes respectively.

The item data size estimates were calculated by using https://zaccharles.github.io/dynamodb-calculator/ (client-side calculation, no network calls observed).

IntermediateKey: 240 bytes
SystemKey: 1227 bytes (assumes AWS KMS with 2 regions. each additional region adds ~494 bytes)

#### In-memory (FOR TESTING ONLY)
Asherah also supports an in-memory metastore but that *should only be used for testing purposes*.

### Disaster Recovery

Ensure that you have proper backup procedures and policies to prevent accidental deletion of keys from the metastore.
A loss of keys from the metastore can render your data unreadable.

### Revoking keys

If there is a need for irregular rotation of keys (e.g. suspected compromise of keys) there is support for marking keys
as “revoked”.

We have created helper python scripts for the above metastore implementations. Usage details on how to run them can
be found [here](../scripts).




            

          

      

      

    

  

    
      
          
            
  # System Requirements

Asherah makes use of native system calls to provide its Secure Memory implementation. As a result, there are a few
system requirements to note.

Unless otherwise stated in language-specific Secure Memory documentation, the below information should apply to all
language implementations of Asherah.



	[Supported Platforms and Required Libraries](#supported-platforms-and-required-libraries)


	[Memory Usage](#memory-usage)


	[Resource Limits](#resource-limits)
* [Current User Session](#current-user-session)
* [System-wide Setting](#permanent-setting)
* [Systemd](#systemd)
* [Docker](#running-docker-containers)
* [Kubernetes](#kubernetes)
* [AWS Lambda](#aws-lambda)







## Supported Platforms and Required Libraries

The following platforms are supported:


	Linux x86-64


	MacOS x86-64 (primarily intended for local development of Asherah)




For both Linux and MacOS, Asherah depends on a libc implementation being available.

Windows is currently supported only for C# SDK, and is primarily intended for local development.

If the library is unable to make the native system calls (e.g. missing method or entire underlying library), the native
facilities of the language will raise an error.

## Memory Usage

One of the system calls Asherah uses in Secure Memory is mlock, which locks address space in memory and prevents it
from being paged to disk. Calling mlock on an address locks an entire page of memory. Page size is usually dependent
on processor architecture and is typically 4KiB. As a result, you should expect Asherah will use 4KiB per key of
memory and account for it in your memory requirements. Note that in languages calling mlock via an unmanaged native
interface, the memory usage will be off-heap.

## Resource Limits

The amount of memory a user can lock is limited by the system’s memlock resource limits. If that limit is reached, the
SDK will throw an exception the next time it tries to lock memory. Below we provide some examples of setting memlock
rlimits.

### Current User Session

In Linux, non-persistent limits can be set using ulimit. This usually need to be done as the root user. To set the
current user’s session to unlimited memlock, you could run the following:

`console
ulimit -l unlimited
`

### Permanent Setting

On Linux servers the /etc/security/limits.conf file allows system-wide and user-specific configuration of memory
locking limits. A new session is needed for user-specific settings, and a system reboot is needed for system-wide
settings. In the below example, we set it to unlimited for all users:

`console
# <User>     <soft/hard/both>     <item>        <value>
*                 -               memlock      unlimited
`

### Systemd

We have observed in internal testing that systemd appears to have its own override for rlimits for services it manages.
One solution we have used is to use systemd’s configuration override mechanism:

In /etc/systemd/system/<service_name>.service.d/override.conf you could add the following for unlimited memlock:

`ini
[Service]
LimitMEMLOCK=infinity
`

You typically need to run /bin/systemctl daemon-reload && /bin/systemctl restart <service_name>.service for the
change to take effect.

### Running Docker Containers

When running Docker containers the –ulimit option can be used to set memlock limits. Note that if your Docker daemon
is running through systemd, you may need to do this in conjunction with the [systemd override mechanism](#Systemd).

Below is an example setting unlimited memlock:

`console
docker run -it --ulimit memlock=-1:-1  [...]
`

### Kubernetes

See this article for configuring mlock on Kubernetes

https://medium.com/@thejasongerard/resource-limits-mlock-and-containers-oh-my-cca1e5d1f259

```
FROM alpine:3.8


	RUN apk add libcap && 
	mkdir -p /home/appuser && addgroup -S app && adduser -u 1000 -S -h /home/appuser -G app appuser





WORKDIR /home/appuser
COPY app.o .

RUN chown -R appuser:app /home/appuser
RUN setcap cap_ipc_lock=+ep app.o
USER appuser

CMD [“./app.o”]
```

```
apiVersion: v1
kind: Pod
metadata:


name: mlockex





	spec:
	containers:
- name: mlockex


image: mlockex:latest
imagePullPolicy: IfNotPresent
securityContext:


runAsNonRoot: true
runAsUser: 1000
capabilities:


add: [“IPC_LOCK”]










restartPolicy: Never





```

### AWS Lambda

See [Encrypt/decrypt sample application for AWS Lambda](/samples/go/aws/lambda/README.md) for a detailed walkthrough,
best practices, and more.



            

          

      

      

    

  

    
      
          
            
  # Library of Testing

Below we describe the set of functional, regression and cross-language tests that are currently used.


	[Regression Tests](#regression-tests)


	[Multi-threaded Tests](#multi-threaded-tests)


	[Cross Language Testing Framework (CLTF)](#cross-language-testing-framework-cltf)


	[Future Work](#future-work)




## Regression Tests

### Sanity checks
- Simple encrypt/decrypt operation.
- Encrypt/decrypt operation multiple times in the same session.
- Encrypt a payload and try to decrypt the same payload in a different session. Ensure that the results match.
- Encrypt a payload using some partition id. Ensure that it cannot be decrypted using a different partition id.
- Encrypt two different payloads and verify that both can be decrypted individually.
- Simple store/load operation.
- Try to overwrite a payload with the same key, and verify that load still works with the same key and returns the 2nd payload.
- Try to load an invalid key and verify that no result is returned.

### Parameterized Tests
System and Intermediate keys in the cache and metastore can each exist in 3 possible states:
- *RETIRED:* A key is present, but it is expired or revoked.
- *VALID:* A key is present and can be used for encrypt/decrypt operations.
- *EMPTY:* The key does not exist.

Based on permutation of these states, we can have a total of 81 (3 ^ 4) combinations of the Intermediate Key (IK) and System Key (SK) in the cache and metastore.



Cache IK | Metastore IK  | Cache SK  | Metastore SK  |



———— | ———— | ———— | ———— |

RETIRED  | RETIRED  | RETIRED  | RETIRED  |

RETIRED  | RETIRED  | RETIRED  | VALID  |

RETIRED  | RETIRED  | RETIRED  | EMPTY  |

RETIRED  | RETIRED  | VALID  | RETIRED  |



… and so on.

For each state combination we encrypt and decrypt a payload, verifying that it runs successfully. Each state combination leads to a set of conditions and resulting interactions with the metastore.

For the encrypt path:


Condition  | Expected interactions on metastore  |

———— | ———— |

IK should be stored  | metastore.store(IK)  |

SK should be stored  | metastore.store(SK)  |

Neither IK nor SK should be stored  | No call to metastore.store()  |

IK should be loaded  | N/A as we don’t read IK from metastore while encrypting  |

SK should be loaded  | metastore.load(SK)  |

Neither IK nor SK should not be loaded  | No call to metastore.load()  |

Latest IK should be loaded  | metastore.loadLatest(IK)  |

Latest SK should be loaded  | metastore.loadLatest(SK)  |

Neither latest IK nor SK should be loaded  | No call to metastore.loadLatest()  |



For the decrypt path:


Condition  | Expected interactions on metastore  |

———— | ———— |

IK should be loaded  | metastore.load(IK)  |

SK should be loaded  | metastore.load(SK)  |



## Multi-threaded Tests
- Run encrypt and decrypt operations with multiple threads.
- Create a single session to encrypt and decrypt data for multiple partitions in parallel.
- Create a single session and call store/load to store and load data for multiple partitions in parallel.
- Create multiple sessions from multiple factories to encrypt and decrypt data using different partition in each thread.
- Create multiple sessions from multiple factories using the same partition in multiple threads.

Ensure that all keys and data row records are created as expected.

## Cross-language Testing Framework (CLTF)
A cross-language testing framework has been implemented using [Gherkin/Cucumber](https://cucumber.io/docs/gherkin/).
The CLTF validates inter-language operability between all supported languages by running the following features.


	Encrypt operation in all languages


	Decrypt operation for the encrypted payload generated in all languages




## Future Work
- Expand the testing framework by adding additional inter-platform features.
- Add test cases for queued key rotation when implemented.
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